Obtuse Angle

Prove that among any 9 points in (3D) space, there are three which form an obtuse angle.

Let the points be labeled A1, A2, … , A9, and P be their convex hull. If we assume that all angles among the points are not obtuse, then the interiors of the bodies P + A1, P + A2, … , P + A9 should be all disjoint. That is because, for every Ai and Aj, P must be bounded between the planes passing through Ai, Aj, and orthogonal to the segment AiAj. However, all of these 9 bodies have the same volume and are contained in the body P + P, which has 8 times larger volume. This is a contradiction, and therefore our assumption is wrong.

Published in Mathematics

Puzzle Prime is tirelessly looking all around the internet to find the very best puzzles and bring them all to puzzleprime.com.

Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View All Comments