Strips in the Plane

Prove that you can not cover the plane with infinite strips which have a total sum of their widths equal to 1.

Take a circle with radius 1 in the plane. A strip with width X covers at most an area of 2X of the circle. Therefore all strips cover at most an area of 2, which is smaller than the total area of the circle (~3.14).

+ latest posts

Puzzle Prime is tirelessly looking all around the internet to find the very best puzzles and bring them all to

Notify of
Inline Feedbacks
View All Comments
Share via
Copy link