Ambiguous Clock

The hands of my alarm clock are indistinguishable. How many times throughout the day their positioning is such that one cannot figure out which is the hour hand and which is the minute hand?

Remark: AM-PM is not important.

Imagine that you have a third hand which moves 12 times as fast as the minute hand. Then, at any time, if the hour hand moves to the location of the minute hand, the minute hand will move to the location of the imaginary hand. Therefore, our task is to find the number of times during the day when the hour hand and the imaginary hand are on top of each other, and the minute hand is not.

Since the imaginary hand moves 144 times faster than the hour hand, the two hands are on top of each other exactly 143 times between 12AM and 12PM. Out of these 143 times, 11 times all three arrows are on top of each other. Therefore, we have 2 × (143 – 11) = 264 times when we cannot figure out the exact time during the entire 24-hour cycle.

Vectors -1, 0, 1

Take all 1024 vectors in a 10-dimensional space with elements ±1. Show that if you change some of the elements of some of the vectors to 0, you can still choose a few vectors, such that their sum is equal to the 0-vector.

Denote the 1024 vectors with ui and their transformations with f(ui). Create a graph with 1024 nodes, labeled with ui. Then, for every node ui, create a directed edge from ui to ui-2f(ui). This is a valid construction, since the vector ui-2f(ui) has elements -1, 0, and 1 only. In the resulting graph, there is a cycle:

v1 ⇾ v2 ⇾ … ⇾ vk ⇾ v1.

Now, if we pick the (transformed) vectors from this cycle, their sum is the 0-vector:

f(v1) + f(v2) + … + f(vk) = (v2 – v1)/2 + (v3 – v2)/2 + … + (v1 – vk)/2 = 0.

Creepy Beasts Inc.

At Creepy Beasts Inc., three of the most dreaded animals, a tiger, a wolf, and a bear, sat in their boardroom in silence while they awaited their boss. Then, Mr. Tiger broke the silence.

“Isn’t it odd that our surnames match our species, yet none of our surnames match our own?”

The wolf replied, “Yeah, but does anyone care?”

They sat in silence again…

Can you figure out the surname of each animal?

Since the wolf replied to Mr. Tiger, his surname can be neither Tiger nor Wolf. Therefore, the wolf’s surname is Mr. Bear. Subsequently, Mr. Tiger must be a bear, and finally, Mr. Wolf must be a tiger.

Odd Rectangle

The sides of a rectangle have lengths which are odd numbers. The rectangle is split into smaller rectangles with sides which have integer lengths. Show that there is a small rectangle, such that all distances between its sides and the sides of the large rectangle have the same parity, i.e. they are all even or they are all odd.

Source: Shortlist IMO 2017

Split the large rectangle into small 1×1 squares and color it in black and white, chessboard-style, such that the four corner squares are black. Since the large rectangle has more black squares than white squares, one of the smaller rectangles also must have more black squares than white squares. Therefore, the four corners of that smaller rectangle are all black. Then, it is easy to see that all distances between its sides and the sides of the large rectangle have the same parity.