Perfect Square Sums

Find all possible arrangements of the numbers 1 to 15 in a sequence, where the sum of any two consecutive numbers is a perfect square.

Note that the number 8 can be neighboring only with the number 1, so it must be at one end of the sequence. The number 15 can be neighboring only with the numbers 1 and 10, so it either needs to be next to 1 or at the other end of the sequence. In either case, 10 should be next to it. The only other number that can be neighboring 10 is 6. Then 3 should follow, then 13 (since 1 is already taken), then 12, then 4, then 5, then 11, then 14, then 2, then 7, then 9. Since 1+9=10 is not a perfect square, we find that the only solutions are


and its reverse.

We do not know where this puzzle originated from. If you have any information, please let us know via email.

Puzzle Newsletter (Post) (#10)
Notify of
Inline Feedbacks
View All Comments