Drown or Burn

The ship you are traveling on crashes and you somehow succeed to reach the shores of an island. On this island however, a cruel tribe resides and decides to murder you. The tribals can not agree on how to do this, so they decide that if the first sentence you say is a lie, they will drown you, and if it is a truth, they will burn you. Luckily, you hear their conversation and come up with a plan. What do you tell them?

You can tell them “You will drown me”. This will result in a paradox – if your sentence is true, then they will drown you, but on the other hand will be forced to burn you, which is a contradiction. Similarly if your sentence if false. Therefore they will not have a choice except to give up on their plan.

Ambiguous Clock

The hands of my alarm clock are indistinguishable. How many times throughout the day their positioning is such that one cannot figure out which is the hour hand and which is the minute hand?

Remark: AM-PM is not important.

Imagine that you have a third hand which moves 12 times as fast as the minute hand. Then, at any time, if the hour hand moves to the location of the minute hand, the minute hand will move to the location of the imaginary hand. Therefore, our task is to find the number of times during the day when the hour hand and the imaginary hand are on top of each other, and the minute hand is not.

Since the imaginary hand moves 144 times faster than the hour hand, the two hands are on top of each other exactly 143 times between 12AM and 12PM. Out of these 143 times, 11 times all three arrows are on top of each other. Therefore, we have 2 × (143 – 11) = 264 times when we cannot figure out the exact time during the entire 24-hour cycle.

Ten Lanterns

You have ten lanterns, five of which are working, and five of which are broken. You are allowed to choose any two lanterns and make a test that tells you whether there is a broken lantern among them or not. How many tests do you need until you find a lantern you know for sure is working?

Remark: If the test detects that there are broken lanterns, it does not tell you which ones and how many (one or two) they are.

You need 6 tests:

(1, 2) → (3, 4) → (5, 6) → (7, 8) → (7, 9) → (8, 9)

If at least one of these tests is positive, then you have found two working lanterns.

It all of these tests are negative, then lantern #10 must be working. Indeed, since at least one lantern in each of the pairs (1, 2), (3, 4), (5, 6) is not working. Therefore, there are at least 2 working lanterns among #7, #8, #9, #10. If #10 is not working, then at least one of the pairs (7, 8), (7, 9), or (8, 9) must yield a positive test, which is a contradiction.