Heaven or Hell

After you die, you somehow appear in a mystical room, which has two doors in it. In front of each door, there is a keeper – one of them always lying, the other one always telling the truth. If you enter the door of the lying keeper, you go straight to Hell. If you enter the door of the truthful keeper, you go straight to Heaven. You can ask one of the keepers whatever question you want (you don’t know which keeper is lying and which is truthful). What should you ask in order to go to Heaven?

You can point your finger to one of the two rooms and ask any of the keepers the question “If I ask the other keeper whether this room leads to Heaven, would he say YES?”. If the answer is NO, go through that door, if the answer is YES, go through the other one.

Crashing Light Bulbs

You are living in a 100-floor apartment block. You know that there is one floor in the block, such that if you drop a light bulb from there or anywhere higher, it will crash upon hitting the ground. If you drop a light bulb from any floor underneath it however, the light bulb will remain intact. If you have two light bulbs at your disposal, how many drop attempts do you need such that you can surely find which the floor in question is?

The answer is 14 drops. You can do this by throwing the first bulb from floors 14, 27, 39, 50, 60, 69, 77, 84, 90, 95, 99, 100 (notice that the difference decreases always by 1) until it crashes and then start throwing the second bulb from the floors in between. For example, if the first bulb crashes at floor 69, you start throwing the second bulb from floors 61, 62, 63, etc. This way the total number of throws would be always at most 14.

Proving that 14 is optimal is done using the same logic. In order to use at most 13 throws, the first throw should be made from floor 13 or lower. The second throw should be made from floor 13+12 or lower, the third throw should be made from floor 13+12+11 or lower, etc. Continuing with the same argument, we conclude that the 13th drop should be made from floor 13+12+…+2+1=91 or lower. However, if the first light bulb does not crash after the last throw, you will not be able to find out which number among 92-100 is X.

9 balls, 1 defective

You have 9 balls, 8 of which have the same weight. The remaining one is defective and heavier than the rest. You can use a balance scale to compare weights in order to find which is the defective ball. How many measurements do you need so that will be surely able to do it?

First we put 3 balls on the left side and 3 balls on the right side of the balance scale. If the scale tips to one side, then the defective ball is there. If not, the defective ball is among the remaining 3 balls. Once left with 3 balls only, we put one on each side of the scale. If the scale tips to one side, the defective ball is there. If not, the defective ball is the last remaining one. Clearly we can not find the defective ball with just one measurement, so the answer is 2.

Coins on a Chessboard

There is a room with a chessboard inside. On each of its 64 squares there is placed a coin, either heads up or heads down. You enter the room and a person inside points towards one special square on the chessboard and gives you the chance to flip one of the coins (whichever you choose). Then you leave the room, your friend enters and has to guess which was the special square on the chessboard. If you two could devise a plan before entering the room, how would you make sure your friend always guesses correctly which is the special square?

Coming soon.