Bridge Over the River

Pinkbird is trying to get to Redbird across the river. Where should we place the bridge, so that the path between the two birds becomes as short as possible?

Remark: The bridge is exactly as long as the river is wide, and must be placed straight across it. Additionally, it has some positive width.

Every Acute Triangle

Consider an arbitrary acute triangle ABC. Let E be the intersection of the bisector at vertex C and the bisection of the side AB. Let F and G be the projections of E on AC and BC respectively.

Since E belongs to the bisection of AB, we must have AE = BE. Also, since E belongs to the bisector of C, we must have EF = EG. However, this would imply that triangles AEF and BGF are identical, and then AF = BF. We also have that CF = CG, which implies that AC = BC. The arbitrarily chosen triangle ABC is isosceles!

Can you find where the logic fails?

Obtuse Angle

Prove that among any 9 points in (3D) space, there are three which form an obtuse angle.

NASA and the Meteor

NASA locates a meteor in outer space and concludes that it has either a cubical or spherical shape. In order to determine the exact shape, NASA lands a spacecraft on the meteor and lets a rover travel from the spacecraft to the opposite point on the planet. By measuring the relative position of the rover with respect to the spacecraft throughout its travel on the planet (in 3D coordinates), can NASA always determine the shape, no matter the route taken by the rover?