Three Cards

There are three playing cards in a row. There is a two to the right of a king. There is a diamond to the left of a spade. There is an ace to the left of a heart. There is a heart to the left of a spade. Identify the three cards.

The cards are an Ace of Diamonds, a King of Hearts, and a Two of Spades.

Cheryl’s Birthday

Cheryl’s birthday is one of 10 possible dates:

May 15
May 16
May 19
June 17
June 18

July 14
July 16
August 14
August 15
August 17

Cheryl tells the month to Albert and the day to Bernard.

Albert: I don’t know the birthday, but I know Bernard doesn’t know either.
Bernard: I didn’t know at first, but now I do know.
Albert: Now I also know Cheryl’s birthday.

When is Cheryl’s birthday?

If Albert knows that Bernard doesn’t know when the birthday is, then the birthday can’t be on May 19 or June 18. Also, Albert must know that the birthday can’t be on these dates, so May and June are completely ruled out.

If Bernard can deduce when the birthday is after Albert’s comment, then the birthday can’t be on 14th. The remaining possibilities are July 16, August 15, and August 17.

Finally, if Albert figures out when the birthday is after Bernard’s comment, then the date must be July 16.

Married Couples

In a small village, there are 100 married couples living. Everyone in the village lives by the following two rules:

  1. If a husband cheats on his wife and she figures it out, the husband gets immediately killed.
  2. The wives gossip about all the infidelities in town, with the only exception that no woman is told whether her husband has cheated on her.

One day a traveler comes to the village and finds out that every man has cheated at least once on his wife. When he leaves, without being specific, he announces in front of everybody that at least one infidelity has occurred. What will happen in the next 100 days in the village?

Let us first see what will happen if there are N married couples in the village and K husbands have cheated, where K=1 or 2.

If K = 1, then on the first day the cheating husband would get killed and nobody else will die. If K = 2, then on the first day nobody will get killed. During the second day, however, both women would think like this: “If my husband didn’t cheat on me, then the other woman would have immediately realized that she is being cheated on and would have killed her husband on the first day. This did not happen and therefore my husband has cheated on me.”. Then both men will get killed on the second day.

Now assume that if there are N couples on the island and K husbands have cheated, then all K cheaters will get killed on day K. Let us examine what will happen if there are N + 1 couples on the island and L husbands have cheated.

Every woman would think like this: “If I assume that my husband didn’t cheat on me, then the behavior of the remaining N couples will not be influenced by my family’s presence on the island.”. Therefore she has to wait and see when and how many men will get killed in the village. After L days pass however and nobody gets killed, every woman who has been cheated on will realize that her assumption is wrong and will kill her husband on the next day. Therefore if there are N + 1 couples on the island, again all L cheating husbands will get killed on day L.

Applying this inductive logic consecutively for 3 couples, 4 couples, 5 couples, etc., we see that when there are 100 married couples on the island, all men will get killed on day 100.

The Father

Warning: this puzzle involves mature themes that are inappropriate for younger audiences. If you are not an adult, please skip this puzzle.

Mary is 21 years older than her son. After 6 years, she will be 5 times older than him. Where is the father?

Let M be the age of the mother and S be the age of the son. We have M = S + 21 and M + 6 = 5(S + 6). We solve the system and get S= -3/4, i.e. minus 9 months. Therefore right now the son just got conceived and the father is with the mother.

Creepy Beasts Inc.

At Creepy Beasts Inc., three of the most dreaded animals, a tiger, a wolf, and a bear, sat in their boardroom in silence while they awaited their boss. Then, Mr. Tiger broke the silence.

“Isn’t it odd that our surnames match our species, yet none of our surnames match our own?”

The wolf replied, “Yeah, but does anyone care?”

They sat in silence again…

Can you figure out the surname of each animal?

Since the wolf replied to Mr. Tiger, his surname can be neither Tiger nor Wolf. Therefore, the wolf’s surname is Mr. Bear. Subsequently, Mr. Tiger must be a bear, and finally, Mr. Wolf must be a tiger.